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is now much greater than that of the United States, as 
shown below.4 

Telecommunications and transportation are the in-
dustries most often targeted in AI patent families. Each is 
targeted in 24 percent of AI patent families.5 Given recent 
growth in autonomous vehicle technology, the promi-
nence of the transportation industry in AI patenting is not 
surprising. Notably, however, the life science/medical in-
dustry area is not far behind and is targeted in 19 percent 
of all AI patent families.6 AI patenting now spreads across 
many diverse industries. For example, some of the indus-
try areas with the biggest recent AI patenting growth are 
agriculture and banking/finance.7

II. AI in Context

AI inventions should not be thought of as divorced
from the specific context of their application. As dis-
cussed further below, although the heart of an AI system 
is typically realized in computer hardware and software, 
the particular design of such an AI system can vary 
significantly depending on the application to which it is 
applied. An AI invention is often intertwined with the 
context of the things it seeks to control and/or analyze 
data from such as a car, a scientific instrument, or a medi-
cal device. In some contexts, such as driving and medical 
diagnosis, the use of machine learning raises not only 
interesting patent questions but also important ethical 
and regulatory issues. 

I. Introduction:  Recent Growth of AI and AI
Patenting

Artificial intelligence (AI) technology has been 
around for decades. Patent filings covering AI-related 
inventions have also been around for decades. However, 
it is only in the past 15 to 20 years that AI has exploded 
in the technology world generally. And it is only in the 
past 10 years that AI has exploded in the world of patent 
filings. 

Last year, the World Intellectual Property Organi-
zation (WIPO) initiated a new series of reports, WIPO 
Technology Trends, with a 154-page report entitled Artificial 
Intelligence (the “WIPO report”). The report looks at AI 
patenting trends across industries and around the world. 
The mere fact that WIPO chose to make AI the focus of 
its first Technology Trends report suggests that AI patent-
ing has become particularly significant. Notably, of the 
roughly 340,000 AI patent filings published since 1960, 
more than half have published since 2013.1 (The statistics 
and charts below are either directly from or based on 
statistics in the WIPO report.)

AI is an umbrella term covering many different 
categories of specific techniques. The “machine learn-
ing” category has dominated AI patent filings in recent 
years and now appears in nearly 90% of AI-related patent 
filings.2 As the chart below shows, new machine learning 
patent families grew steadily but modestly from 1990 to 
2010. After 2010, growth accelerated dramatically.3  

The recent AI patent filing boom is driven mainly by 
filings originating in China and in the United States. Al-
though Japan led the world in AI patent filings until the 
late 1990s, and Korean filings have grown steadily since 
the early 1990s, filings in the United States and in China 
over the past 10 years have significantly outpaced those 
in other countries. Furthermore, China’s AI-filing growth 
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III. Elements of an AI Invention
To gain insight into the kinds of things that go into

AI patent applications and some of the unresolved legal 
issues related to AI patenting, it helps to get a feel for 
how AI actually works. As stated above, in the technol-
ogy world and in the patent world, machine learning is 
far and away the most prominent AI technology category. 
Therefore, although there are other categories of AI tech-
nology, we focus here on machine learning.

A. Machine Learning Generally

The WIPO report defines “machine learning” as:

[A]n AI process that uses algorithms
and statistical models to allow comput-
ers to make decisions without having
to explicitly program it to perform the
task. Machine learning algorithms build
a model on sample data used as train-
ing data in order to identify and extract
patterns from data, and therefore acquire
their own knowledge.8

To put it more succinctly, machine learning technol-
ogy allows a computer to “learn” from examples. The 
quotation marks remind us that when we speak of a com-
puter “learning,” it is really shorthand for “appearing to 
learn” or “learning-like” activity. 

Many things we observe and learn about in the real 
world can be represented as a mathematical function that 
maps inputs to outputs. For example, a baseball pop-fly 
can be represented by inputs such as velocity, height, 
mass, flight angle, air velocity, etc. To the extent those 
inputs impact an output of interest, e.g., where the ball 
will land, there is a probably a discoverable mathemati-

cal function that can be used to predict the output based 
on the set of inputs. In the pop-fly example, classical 
mechanics provides rules describing such a function and 
can, with sufficient accuracy, predict the ball’s landing 
spot given correct inputs. Thanks to Newton and various 
equations derived from his laws of motion, we already 
know rules describing such a function. But before discov-
ering his laws of motion, Newton needed to make many 
observations of objects in motion and figure out what 
those laws were.    

Machine learning’s goal (at least in the context of 
what is known as “supervised” learning) is to allow a 
computer to carry out at least part of the scientific meth-
od. The first step (the hard one) is to use real-world known 
examples of something—i.e., instances of that something 
for which relevant conditions and results are already 
known—to discover a mathematical function that maps 
those real world conditions (function inputs) to real-
world results (function outputs). The second step is to ap-
ply that newly discovered function to untested examples 
of that something by measuring or otherwise obtaining 
conditions associated with those untested examples and 
then using those conditions as inputs to the function to 
predict a real-world result based on the function’s output.

Below are just a few illustrative examples of useful 
real-world applications and “inputs” and “outputs” that 
might be associated with a machine learning implementa-
tion for those applications:

Application Inputs
Math function 
(mapping inputs 
to outputs)

Outputs

Object 
recognition

Pixel values from a digital image (and/
or features values computed using those 
pixel values)

?
Object identity (e.g., word or phrase selected 
from a set of thousands of words or phrases 
corresponding to various objects)

Tissue 
pathology 
slide analysis

Pixel values from a digital image (and/
or features values computed using those 
pixel values)

? Tissue classification as positive (e.g. for 
cancer) or negative

Speech 
recognition

Digital audio data (and/or feature 
values computed using that data) ? Recognized words

Autonomous 
driving

Lidar data, image data, car velocity 
data, weather data, time of day data, 
etc.

?

Driving control instructions (e.g., for 
steering, accelerating, braking, etc.) and/or 
intermediate outputs for determining such 
instructions (e.g., indication that object 30 
feet away is another car)

Cardiac 
diagnosis EKG data ? Arrhythmia identification / classification
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A neural network typically is arranged in “layers” of 
nodes known as artificial neurons. For example, in the 
above illustration, nodes N11 and N12 are in a first layer, 
and nodes N21 and N22 are in a second layer. Each node 
of the above neural network implements what is known 
as an “activation” function, which typically is a fairly 
simple non-linear function. For example, a commonly 
used activation function in recent years is known as the 
“ReLU” function (ReLU refers to “rectified linear units”). 
The rule for that function is simple: If the input is greater 
than 0, then the output equals the input. If the input is 
less than or equal to 0, then the output equals 0. The 
activation function determines a node’s output value by 
applying the function’s rule to a weighted sum of inputs 
from nodes in a prior layer. The “weights” shown above 
(w1, w2 . . . w10) are the parameters to be learned during 
training. 

The above network’s computations would proceed 
as follows: The input to node N11 is equal to (Input1)
(w1) + (Input2)(w3). The input to node N12 is (Input1)
(w2) + (Input2)(w4). In similar fashion, the input to node 
N21 is a weighted sum of the output of nodes in the prior 
layer, i.e., (N11output)(w5) + (N12output)(w7), as is the 
input to node N22, i.e., (N11output)(w6) + (N12output)
(w8), and the input to node N31, i.e., (N21output)(w9) + 
(N22output)(w10). The output of each node is deter-
mined by applying the activation function to the input.

The above network would be “trained” for a particu-
lar real-world prediction problem by running training 
data with known output values through the network and 
making incremental adjustments to weight values to 
reduce the network’s prediction error until it cannot be 
reduced any further. A simplified overview of that 
process is as follows:

In sum, machine learning strives to fill in the “func-
tion” column above by analyzing training data derived 
from real-world examples in which the values for the in-
puts and outputs are already known. Once a sufficiently 
accurate function is discovered, then the trained machine 
learning system applies that function to determine out-
puts for new, untested examples, assuming the inputs of 
the new examples can be measured and provided to the 
trained machine learning system.

B. How Neural Networks Find a Function From

Of course, if all real-world relationships of interest 
were simple linear ones, then we could get by with basic 
algebra and avoid the need for sophisticated machine 
learning techniques such as neural networks. But many 
important real-world relationships are very non-linear.

Neural networks provide intricate template functions 
to model complicated, non-linear relationships between 
measurable conditions (inputs) related to a real-world 
thing of interest and particular outcomes of that real-
world thing of interest. Those template functions might 
have several thousand (or more) unknown parameters. A 
very simple “feed forward” type neural network is 
shown below by way of illustration.   

Examples

We now dip a toe in the water of some neural net-
work details—without pretense of completeness or 
technical precision—to provide a feel for the technology 
on a small, simplified scale to give some sense of what is 
involved on a larger scale. Machine learning techniques, 
such as neural networks, essentially use a “template” 
function that has a structure but also has many unknown 
parameters. The machine learning system then uses train-

ing data and a training algorithm to try to “learn” the 
optimal parameter values so that the function’s output 
can be calculated accurately for new examples given a 
new set of inputs. 

The underlying principle is more familiar than it 
might seem. Consider a very simple “template” function, 
the basic linear equation from junior high math:

y = ax+b

In the language of machine learning, y is an output 
value corresponding to some real-world thing; x is an 
input value corresponding to some real-world thing; and 
a and b are unknown parameter values. If you know that 
the relationship between x and y is linear, then you can 
discover the value of parameters a and b with just two 
known examples, each of which is represented by an 
input value x and an output value y.

For example, assume:

a is the speed someone travels directly away from 
home from a given starting point; 

b is the distance from home of the given starting 
point;

x is the time the person spends traveling directly 
away from home; and

y is the person’s final distance from home.

If we assume a and b are fixed values that do not 
change from one example to another, then we can de-
termine those fixed values with two different “training” 
examples in which x and y are known. Once we know 
the fixed values for the parameters a (speed) and b 
(initial distance), we can determine the value of y (final 
distance from home) for any value of x (time spent 
traveling) us-ing the above equation. 
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1. Start with arbitrary values for w1, w2, . . . w10;

2. For a first training example, run the example’s
input data through the network to determine a
predicted output;

3. Compare the predicted output to the known out-
put of the training example to obtain an error mea-
surement;

4. “Back propagate” the error through the network
using something called the “back propagation
algorithm” (which involves a series of partial
derivative determinations working back through
the network’s processing pathways) to assess the
amount of the error attributable to each weight
(w1, w2 . . . w10);

5. Incrementally adjust the weight values to try to
slightly decrease the error; and

6. Repeat steps 1-5 using additional training data ex-
amples until error is minimized.

Each neural node implements a simple function. 
However, a large network of such nodes collectively 
implements a very complicated non-linear function that, 
ideally, can be “trained” as described above to effectively 
model the relationship between inputs and outputs of the 
real-world phenomenon to which it is applied.

The above example shows just a small piece of one 
type of neural network. Other popular types include, for 
example, recurrent neural networks and convolutional 
neural networks. And many neural networks include 
multiple types of neural layers, e.g., convolutional layers, 
feed-forward layers, etc. and are used with other types 
of processing such as pooling or other techniques that 
reduce data size along the processing flow of the net-
work. Moreover, the particular structure in terms of layer 
widths, number of layers, location of auxiliary inputs 
(e.g., inputs injected initially downstream of the initial 
network layer), and various other factors have infinite 
possible variations.

C. Neural Network Inventions

A neural network invention typically involves select-
ing and arranging a particular mix and configuration of 
neural network layer types, sizes, and depths that works 
well for a particular real-world problem. Neural network 
inventiveness can also reside in identifying the optimal 
input data, input pre-processing techniques, and/or train-
ing techniques that work best given the particular real-
world problem to which the neural network is applied.

The possible elements of a neural network inven-
tion listed below could arguably all be characterized as 
mathematical, thus raising a question of whether such 
inventions are simply “abstract ideas” and therefore not 
eligible subject matter under 35 U.S.C. § 101. However, 
the choices made regarding the elements in a neural net-

work invention can dramatically and concretely impact 
the ability of a computer to efficiently solve problems 
existing in the physical world. And, in some fields, that 
efficiency can be a matter of life and death. Cancer re-
search, for example, is a race against time for those who 
have or will get diagnosed with the disease. One neural 
network design might help analyze genetic sequences 
an order of magnitude faster than another. To the extent 
significant improvements in processing time and/or 
accuracy in analysis of physical phenomena result from 
a neural network invention, we believe that invention is 
more than simply an abstract idea. However, as discussed 
near the end of this article, the law does not yet appear to 
have clearly reached that conclusion.   

1. Architecture

The type and arrangement of neural network or other
machine learning structures and techniques that work 
best for allowing a computer to use image data of biop-
sied tissue to predict whether the tissue contains malig-
nant cells might be very different from the particular type 
and arrangement of structures and techniques that allow 
a computer to recognize spoken words based on captured 
audio data. In both cases, the individual techniques/
processing elements are likely well known, but their 
particular arrangement and configuration in the invented 
AI system for performing the particular task is not well 
known. Thus, the types of layers, arrangement of differ-
ent layers, size (width) of various layers, number of layers 
(network depth) and, in sum, the overall architecture of a 
neural network tailored to a particular problem is often at 
the heart of an AI invention. 

2. Input Data Determination, Pre-Processing, and
Feature Extraction

AI inventors distinguish between “raw” data (or 
processed raw data such as normalized, weighted, or 
encoded data), on the one hand, and “features,” on the 
other. Both types of data are potential candidates for 
inputting into a neural network. “Features” are typically 
some values derived from the raw data. For example, 
in processing digital image data for input into a neural 
network for object recognition, the pixel values might be 
the “raw” data. It is possible to input all the pixel values 
into a neural network. However, it is also possible to 
extract image “features” from the pixel data and input 
those “features” into the neural network rather than, or in 
addition to, the raw pixel data. For example, a “feature” 
might be computed based on a change in pixel values 
over a portion of the image. It is also possible to use a 
neural network to learn what “features” are most useful 
to derive from a given type of raw data for a particular 
classification or prediction task.

The choice of what raw data to collect and use, how 
to pre-process it, and what features to extract from that 
data, if any, for input to a neural network can significantly 
impact how well the neural network performs a particu-
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A.	 Written Description and Enablement: Is AI an 
“Unpredictable Art?”

The law regarding both written description and 
enablement under section 112 distinguishes between 
so-called “predictable arts” and “unpredictable arts.” The 
former typically requires less detailed disclosure in order 
to support relatively broad claim scope, while the latter 
typically requires greater disclosure detail. Tradition-
ally, many mechanical, electrical, and computer-related 
inventions are treated as “predictable arts” for section 112 
purposes, whereas many chemical, life science, and medi-
cal treatment-related inventions are treated as “unpre-
dictable arts.” 

As discussed further below, AI inventions present 
potential challenges to this traditional division between 
“predictable” and “unpredictable.” Notably, the USPTO’s 
2019 Request for Comments on Patenting Artificial Intel-
ligence Inventions9 raises the question of whether AI 
inventions should be treated as unpredictable arts for 
purposes of section 112. 

1.	 Written Description

To meet the written description requirement under 
section 112, a patent specification must describe the 
claimed invention in sufficient detail that a person of 
ordinary skill in the art can reasonably conclude that the 
inventor had possession of the claimed invention. Gen-
erally, disclosures for relatively new, complex, and/or un-
predictable arts require a heightened level of detail to sat-
isfy the written description requirement.10 As a new field 
evolves, the balance between what is known and what is 
added by each inventive contribution also evolves.11

The level of detail required to satisfy the written 
description requirement varies depending on the nature 
and scope of the claims and on the complexity and pre-
dictability of the relevant technology.12 Computer-related 
inventions have traditionally been treated as “predict-
able” in the sense that it has been assumed that one 
skilled in the art would understand what the inventor has 
invented if the specification provides at least high-level 
disclosure of the underlying processing. In other words, 
the inventor does not need to spell out in detail all varia-
tions on how a particular solution might be implemented 
in order to claim the solution with reasonably broad 
scope. 

However, in the context of deep-learning technology, 
the reasons why one neural network design performs 
better than another is not necessarily clear to one skilled 
in the art or even to the inventor. Whether a particular so-
lution will work can, in some cases, be as much a matter 
of trial and error as it is a matter of discovering principles 
that underly the efficacy of that solution. Therefore, as-
sessing whether undisclosed variations on the primary 
embodiments were in the possession of the inventor at 
the time of the application’s filing might be more chal-
lenging in the context of AI inventions than in the context 

lar learning task. Significant thought and experiment go 
into making these choices, and they are an appropriate 
subject of AI inventions.

3.	 Training Methods 

Neural networks are trained by iteratively passing 
training data through the network, measuring the “error” 
(sometimes called “loss”) in the outputs relative to known 
values of what the output should be, and updating 
weight values to gradually reduce that error. Currently, 
many neural networks are trained using some variation 
of the back-propagation algorithm previously mentioned. 
For many neural network applications, standard training 
techniques are used in a routine way, and those tech-
niques are not elements of the invention.    

However, standard training techniques can be modi-
fied and/or combined with other known training tech-
niques for specific training tasks in a manner deserving 
of protection. For example, known training techniques 
can be modified to prioritize certain training performance 
goals appropriate for a particular application. Such goals 
might include learning weights quickly that produce 
acceptable, but not spectacularly low, error levels or, by 
contrast, more finely tuning weights over a longer time 
period to increase predictive precision. We think such 
training techniques and/or the selection thereof in a 
particular context can be appropriate elements of an AI 
invention. 

IV.	 Challenging Patent Law Issues for AI 
Inventions

AI inventions are everywhere these days. And many 
areas of AI innovation are consequential to advancing 
particularly high-stakes endeavors. For example, these 
inventions provide cutting-edge tools that promise to 
improve the efficiency and effectiveness of medical re-
search and, ultimately, diagnoses and treatments. How-
ever, despite the potential criticality of AI inventions to 
advances in medical and life sciences, current U.S. patent 
law leaves an undesirable level of uncertainty regarding 
section 112 written description and enablement require-
ments and section 101 subject matter eligibility require-
ments for AI inventions. This uncertainty risks incentiv-
izing leading companies to keep the inner workings of 
important AI inventions secret rather than seek patent 
protection. Such decisions by those on the cutting edge of 
applying AI to medicine and other fields risk reducing the 
open exchange of information that is fundamental to the 
patent system’s constitutional purpose of promoting the 
progress of science and useful arts. In light of these risks, 
below we offer thoughts and practice tips for how patent 
attorneys might think about the application of sections 
112 and 101 to AI inventions.
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of other computer-related inventions. Notably, the USPTO 
has raised the question of whether AI inventions might, 
under the written description requirement, require more 
detail in the specification’s disclosure than other inven-
tions require.13  

2. Enablement

In order to meet the enablement requirement, an
invention must be disclosed in sufficient detail to allow 
one of ordinary skill in the art to both make and use the 
invention without undue experimentation.14 In re Wands 
sets forth several factors for determining whether un-
due experimentation is required: (1) the breadth of the 
claims; (2) the nature of the invention; (3) the state of the 
prior art; (4) the level of one of ordinary skill; (5) the level 
of predictability in the art; (6) the amount of direction 
provided by the inventor; (7) the existence of working 
examples; and (8) the quantity of experimentation needed 
to make or use the invention based on the content of the 
disclosure.15 

For “predictable arts” a person of ordinary skill in 
the art is generally assumed to have reasonably high 
mastery of the basic tools and techniques disclosed in the 
specification for making and using the invention. Such 
an assumption allows for a relatively high-level descrip-
tion of subject matter, e.g., generic computer components, 
network connections, etc., which are considered to be 
well-known by a person of ordinary skill.16 Therefore, an 
inventor might satisfy the enablement requirement by de-
scribing only limited or incrementally inventive portions 
of a computer-implemented application in greater detail. 

However, for AI inventions, the USPTO has asked 
whether the unpredictability of certain AI systems raises 
challenges for applicants to provide sufficient detail 
to avoid “undue experimentation.”17 While no special 
considerations apply to AI for enablement at this point, 
we note that AI inventions share some characteristics 
with inventions in the traditionally “unpredictable arts” 
category, i.e., chemical, pharmaceutical, biotech, and other 
life-sciences related inventions. AI inventions, like chemi-
cal and life-science inventions, often require significant 
research and trial and error over a long period of time 
to discover solutions that work for a particular problem. 
Just as it might be difficult to understand exactly why a 
particular chemical formulation leads to effective results 
for addressing a particular problem, it might be difficult 
to understand why certain neural network structures and 
not others work well for a particular prediction problem. 
Because the underlying reasons for success might not be 
well understood, it might be difficult for one of ordinary 
skill to generalize the disclosed embodiments to imple-
ment a variety of other solutions that are within the scope 
of a claim but differ significantly from the exact embodi-
ments disclosed in the specification.  

Treating AI as an “unpredictable art” for the purposes 
of enablement would have significant implications for 

preparing and prosecuting AI patent applications. As the 
Federal Circuit’s predecessor court stated in In re Fisher, 
“In cases involving unpredictable factors, the scope of 
enablement obviously varies inversely with the degree of 
unpredictability of the factors involved.”18 In the chemi-
cal arts, the guidance and ease/difficulty in carrying out 
an assay to achieve the claimed objectives may be con-
sidered in determining the amount of experimentation 
needed in an enablement analysis.19 Likewise, with AI 
technology, enablement compliance might require signifi-
cant detailed guidance in the specification regarding how 
to make or use the invention in order to avoid a finding 
that “undue experimentation” is required. 

It is too early to know whether AI inventions will ul-
timately be treated as within the “predictable” or “unpre-
dictable” arts for purposes of the written description and 
enablement requirements. But, at the very least, patent 
practitioners who draft patent applications for AI inven-
tions should keep in mind the current uncertainty regard-
ing written description and enablement requirements for 
AI inventions and be prepared to defend the sufficiency 
of their disclosures during prosecution.

3. Subject Matter Eligibility

USPTO guidance for subject matter eligibility under
section 101 does not yet include AI-specific examples, and 
a robust body of section 101 jurisprudence on AI-specific 
questions does not yet exist. However, the USPTO’s 2019 
Request for Comments suggests that the USPTO is ac-
tively considering how to best treat AI inventions under 
section 101.20  

In the meantime, the USPTO has continued to update 
its section 101 eligibility guidance and examples, which 
provide something, at least, for practitioners to go on 
when trying to apply section 101 law to AI. In 2019, the 
USPTO further revised its section101 guidance with a 
January revision (the “2019 PEG”) and request for com-
ments and provided a further update in October21 (the 
“October Update”).

The 2019 updates added a new “integrated into a 
practical application” prong to Step 2A of the existing 
USPTO framework for evaluating subject matter eligi-
bility. This new prong makes clear that even if a claim 
recites a judicial exception (abstract idea, law of nature, 
or natural phenomenon) the claim is not considered to 
be “directed” to that judicial exception if “the claim as 
a whole integrates a judicial exception into a practical 
application.”22

In general, the judicial exception is integrated into a 
practical application if it does something concrete with 
the exception’s output. The October Update, at least in 
the medical science context, clearly distinguishes between 
data input gathering activity and data output utilization 
activity. The latter appears to satisfy this new “integrated 
into” prong, while the former, by itself, does not. For ex-
ample, according to the October Update, a claim reciting 
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vaccinating cats using different vaccination schedules and 
then analyzing results to determine a lowest risk schedule 
would not integrate the judicial exception into a practi-
cal application.23 The vaccinating step in that example is 
merely “in order to gather data.”24 However, if the rele-
vant claim goes on to recite using the identified lower risk 
schedule to then vaccinate other cats, that would integrate 
the judicial exception into a practical application, and the 
claim would be subject-matter eligible.25 

It is important not to confuse the “integrated into” 
analysis under the new prong of Step 2A with the “sig-
nificantly more” analysis of Step 2B of the USPTO guide-
lines. In contrast to additional elements under the “signif-
icantly more” analysis of Step 2B, the additional elements 
relied on for the “integrated into” analysis can be “routine 
and conventional.” The October Update’s Example 46, 
regarding a livestock management invention, makes this 
particularly clear:26 Claim 1 recites gathering livestock 
data via monitors (e.g., video cameras), analyzing the 
data to determine whether an animal’s data appears to 
be aberrant, and displaying the results on a display.27 The 
USPTO considers this claim not eligible.28 By contrast, 
Claim 3 of the same example adds the step of controlling 
a sorting gate to separate animals with aberrant behavior 
from those with normal behavior.29 This additional step 
renders the claim eligible.30 Note that although control-
ling a sorting gate, by itself, is presumably “routine and 
conventional,” that is okay because, in context, it inte-
grates the alleged exception into the “practical applica-
tion” of separating the livestock based on behavior, which 
goes beyond simply identifying the behavior.        

In the context of AI inventions, this answers some 
questions but not others. For example, a claim to an AI 
invention for an autonomous vehicle would presumably 
be eligible if the claim recited using the AI data output 
to control the vehicle in some way. However, we still 
lack official guidance that tells us whether or when an 
intricately designed neural network processing system, 
tailored to a specific real-world problem, can be patent-
eligible if it produces a useful data output but that output 
does not trigger some further concrete action. Because 
machine-learning applications often make predictions or 
accurately identify things without necessarily taking fur-
ther actions based on those predictions or identifications, 
further AI-specific guidance is needed. Such further guid-
ance would help AI innovators and patent practitioners 
make more effective decisions regarding patenting AI. 
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